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Abstract 

We explore the prospect of inferring the epicenter and 

influences of seismic activity from changes in background 

phone communication activities logged at cell towers. In 

particular, we explore the perturbations in Rwandan call 

data invoked by an earthquake in February 2008 centered in 

the Lac Kivu region of the Democratic Republic of the 

Congo.  Beyond the initial seismic event, we investigate the 

challenge of assessing the distribution of the persistence of 

needs over geographic regions, using the persistence of call 

anomalies after the earthquake as a proxy for lasting 

influences and the potential need for assistance. We also 

infer uncertainties in the inferences and consider the 

prospect of identifying the value of surveying the areas so 

that surveillance resources can be best triaged.   

Introduction   

Cellular phone networks have matured into well-developed 

and relatively widespread systems in developing countries 

with otherwise minimal infrastructure. While these 

pervasive cellular networks are continually generating call 

data records (CDR) for billing and maintenance purposes, 

we consider this infrastructure as an innervating sensor 

network that can be used for natural and human event 

detection. Methods for making inferences from 

anonymized CDR could provide guidance for detecting 

and reacting to natural disasters in remote geographic 

regions. Opportunities include making inferences about the 

nature and needs of people and populations facing acute 

challenges or at risk, about allocating scarce 

reconnaissance resources, and proactive decision making 

and actions to minimize hunger, thirst, and the spread of 

disease.   

 Beyond core inferences, we shall investigate the 

handling of the inevitable uncertainties in predictions. 

Varying densities of phones and cell towers and other 

factors may lead to varying levels of confidence in 

inferences from call data.  Thus, inferential methods should 

include representations and machinery for capturing and 
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propagating uncertainties about the inferences themselves.  

We show how we can coherently represent and propagate 

uncertainties and can use these uncertainties to prioritize 

the collection of new data, via computation of the value of 

making additional observations.  Such computations of 

information value can be used to triage scarce resources 

available for reconnaissance.  For example, the methods 

can be used to compose plans for surveying different 

regions for damages and needs, in order to achieve 

maximum relief within an available reconnaissance budget. 

 

 
 

Figure 1. Location of the epicenter (star) of the February 

2008 earthquake in the Lac Kivu region of the Democratic 

Republic of the Congo (courtesy US Geological Survey).   
 

We evaluate such inferential opportunities in the context of 

the earthquake of February 3, 2008, centered in the Lac 

Kivu region of the Democratic Republic of the Congo.  

The epicenter and surrounding population centers as 

displayed in Figure 1.  We shall examine the trends in call 

activity as logged at all cell towers within Rwanda before 

and after the earthquake and show how we can apply 

statistical modeling methods to: (1) detect when the 

earthquake occurred, (2) estimate the epicenter of the 

earthquake, (3) identify regions associated with persistence 

of anomalous activity, considering these regions and their 

respective population densities as a proxy for potential 

needs for assistance, and (4) quantify regional uncertainties  

to triage additional data collection efforts about the needs 

of a population. 
 We shall first present the general approach and overall 
framework for making such inferences, followed by the 
technical details of modeling and other computational 



considerations.  Then, we focus on the case of the Lac 
Kivu earthquake and apply the methods to make inferences 
from the Rwandan CDR. 
 

Related Work 
 
Numerous research projects are leveraging the sensing 

capabilities of cellular phones and associated 

communication infrastructure as a resource of behavioral 

information.  As examples, mobile phones have been used 

as sensors in determining social network structure [Eagle et 

al. 2009], performing activity recognition [Choudhary and 

Borriello 2008], and modeling human mobility [González 

et al. 2006].  

 Rather than building models of regular, recurring 

behavioral patterns, we pursue the detection and modeling 

of rare, disruptive events. With this approach, we consider 

background activity to learn patterns of normalcy, and then 

seek to detect and understand anomalies and their 

implications within small windows of time.   

 

Approach 

Assume that there are 𝑁 cell towers and that for any 𝑖𝑡  

tower (where 𝑖 ∈ {1. .𝑁}), we have a time series of 

observations:  𝑎𝑖
1 , 𝑎,…𝑎𝑖

𝑡 ,…𝑎𝑖
𝑇  about communication 

activity on consecutive days 1..T logged by each cell tower. 

We also have access to the longitudes and the latitudes 
 𝑥𝑖 , 𝑦𝑖  of the geographical positions of these towers. 

 We shall consider observations jointly for all the cell 

towers and make inferences from changes in call volume 

that might have disrupted or influenced a population in 

some way. For certain kinds of events, we may be 

interested in inferring a central point of maximal intensity.  

For others, we may additionally wish to infer regions 

where maximal disruption to populations may have 

occurred. By making such inferences, we seek to build 

maps that would highlight areas where assistance or relief 

efforts might need to focus and where additional 

information is required before informed decisions can be 

made about resource allocation.  

 We shall make three assumptions in our analyses:  

 1. Cell tower traffic deviates statistically from the 

normal patterns and trends in case of an unusual event.  

 2. Areas that suffer larger disruptions experience 

deviations in call volume that persist for a longer period of 

time. 

 3. Disruptions are overall inversely proportional to the 

distance from the center(s) of a catastrophe. 

Note that the first assumption talks about deviations, which 

can either be increase or decrease in call activity, 

consequently the approach based on assumption should be 

able to deal with events that induce both kinds of 

deviations. The second assumption is based on the 

observation that cell phones capture the pulse of human 

activity and discourse in a region. Following a large-scale 

event such as an earthquake, people may increase call 

traffic as they check in on safety, seek assistance, or 

coordinate in other ways.  In other cases, a reduction of 

call traffic may occur given disruption to functionality of 

the phone system and large-scale loss of life.  Regardless 

of the different mixes of these phenomena, we may often 

see anomalous call activity. The third assumption about 

centrality and diminishment with distance captures such 

disruptive phenomena as earthquakes that are often linked 

to a point of origin or epicenter.   

Detecting Events. We shall first seek to build a system 

that can detect unusual events, such as disruptions caused 

by seismic events, by analyzing the background and 

dynamics of tower-level call volume. Let us assume that 

for every cell tower we have a Gaussian model that reflects 

regular activity. Formally for an uneventful day 𝑡, 
 

𝑝 𝑎𝑖
𝑡   𝑁𝑜𝑛 − 𝐸𝑣𝑒𝑛𝑡)~𝑁(𝑚𝑖 ,𝜎𝑖

2) where 𝑖 ∈ {1. .𝑁} 
 

Here, 𝑚𝑖  and 𝜎𝑖
2 denote the mean activity and the variance 

of the i
th

 cell tower and can be estimated from historical 

data. Given this representation of normal activity, we can 

detect anomalous events by identifying deviations from the 

normal activity and trends in one or more cell towers. To 

detect unusual activity, we seek to identify how well the 

current observations fit the normal activity. Specifically, 

we shall employ the negative log likelihood as a scoring 

mechanism for detecting anomalies in call data: 

                   𝑆𝑐𝑜𝑟𝑒𝑡 =  
(𝑎𝑖

𝑡−𝑚 𝑖)
2

2𝜎𝑖
2 + 𝑙𝑜𝑔𝜎𝑖

𝑁
𝑖=1                   (1)             

A higher 𝑆𝑐𝑜𝑟𝑒𝑡  reflects an increased likelihood of an 

anomalous event occurring on day 𝑡 and this proposed 

measure can be used in a detection procedure. 

Predicting Location of Event. Once we detect that an 

event of significance has taken place, we seek to identify 

the region at the center of the disruption or catastrophe 

from multiple cell towers. We shall rely on Assumption 3, 

which asserts that the call volume at towers that are closer 

to the vicinity of the central region of the disruption should 

have larger increases in activity. In particular, we assume 

that, in light of a significant event, the cell tower activity is 

influenced by the distance it is from the event center, 

(𝑒𝑥 , 𝑒𝑦 ).  Formally, if 𝜃 ≜ {𝑒𝑥 , 𝑒𝑦 ,𝛼} then we assert, 

                  𝑝𝜃  𝑎𝑖
𝑡   𝐸𝑣𝑒𝑛𝑡)~𝑁(𝑚𝑖 +

𝛼

𝐷
𝑖

(𝑒𝑥 ,𝑒𝑦 ) ,𝜎𝑖
2)           (2) 

Here, 𝐷
𝑖

(𝑒𝑥 ,𝑒𝑦 )
=  (𝑥𝑖 − 𝑒𝑥)2 + (𝑦𝑖 − 𝑒𝑦)2 denotes the 

distance of the i
th

 cell tower from the center (𝑒𝑥 , 𝑒𝑦) and 𝛼 

is an unknown scaling parameter. Given this model and the 

observations on the day of the event, we invoke the 

principle of maximum likelihood to estimate the unknown 

center of action, (𝑒𝑥 , 𝑒𝑦 ), and the scaling parameter. In 



particular, we search for the best 𝜃∗ to estimate the 

epicenter by maximizing the log likelihood, 
 

𝜃∗ = argmaxθ  log 𝑝𝜃 𝑎𝑖
𝑡   𝐸𝑣𝑒𝑛𝑡)𝑁

𝑖=1  
 

We can solve for 𝜃∗ via search, using gradient-descent 

optimization to determine the parameters (𝑒𝑥 , 𝑒𝑦) and 𝛼, 

thus inferring a central location of a disruptive event.  

Predicting Opportunities for Assistance. Beyond 

identifying regions where there are acute changes in call 

activity in response to a disruptive event, we wish to make 

inferences about regions that have likely suffered more 

damage and thus are higher priority areas of attention for 

the provision of assistance.  Beyond triaging attention, we 

are also interested in opportunities to make direct 

inferences about the nature and geographical distribution 

of ideal sets of proactive actions that might be taken for 

such goals as maximizing the survival of people who have 

been injured or are trapped, coalescing transportation 

resources and expertise for medical care, and creating, 

readying, and perhaps even implementing contingency 

plans for transporting medications, food, and water.  The 

latter can be important with minimizing or ameliorating the 

spread of such diseases as cholera, which may follow 

natural disasters with some delay.  Cholera has a 5% 

mortality rate in Africa and the primary treatment is the 

provision of sufficient water to patients.  We are interested 

in opportunities to construct predictive models that can 

identify regions at risk for a jump in cholera incidence 

following a disastrous event. Proactive measures guided by 

predictive models, such as preparing to ensure that water 

and related medical assistance is available for transport to 

such regions, could reduce morbidity and mortality. 

 Per Assumption 2, we shall consider a significant and 

persistent deviation from the baseline in call volume, as a 

signal of disruption. Our strategy is to build a model that 

can accurately predict if a significant deviation in a tower’s 

call volume would persist. Given that many people may 

communicate by phone to simply check in with family and 

friends about the acute influences of an earthquake, we 

wish to consider the region-specific persistence of 

anomalous activity over time as a proxy for significant 

disruption and as an indication of opportunities for 

assistance in those regions.  

 We seek to identify whether a seismic event will lead to 

changes in call activity that persist days after the event as a 

sign  of persistent needs. We explore a predictive model 

that considers cell tower coordinates, in conjunction with 

the prior activity and population around towers, to predict 

whether a significant deviation of call activity from 

baseline will persist.   

 Let us assume that a disruptive event occurred on day 𝑡 ′ . 
We are interested in predicting whether a significant 

increase in activity at an i
th

 cell tower would be observed at 

𝑘 days following the event. To this end, we train a 

classifier 𝑤, that predicts anomalous cell traffic at 𝑘 days, 

given activity at the cell towers. 

 Let us consider call activity 𝑎𝑖  to be a significant 

deviation if the call traffic differs by more than one-sigma 

(𝜎𝑖)  from the mean 𝑚𝑖  at baseline. We shall consider three 

observations for each cell tower. Formally, 𝑜𝑖 =

 [𝑎 𝑖 ;  𝜋𝑖 ;𝐷𝑖
 𝑒𝑥 ,𝑒𝑦  ; 𝑥𝑖 ; 𝑦𝑖 

𝑇

 denotes the observation vector 

corresponding to the i
th

 tower and the features represent 

deviation in activity on the day of earthquake (𝑎 𝑖 ≜
𝑎𝑖
𝑡−𝑚 𝑖

𝜎𝑖
) , the population density (𝜋𝑖) around the tower, its 

distance (𝐷
𝑖

(𝑒𝑥 ,𝑒𝑦 )
) from the center of the event, and its 

coordinates (𝑥𝑖 , 𝑦𝑖 ).  
 We include the population density as an evidential 

feature so as to capture the prospect that damage and 

disruption in a region that is buffeted by seismic forces is a 

function of the density of people living in regions.  With 

increasing density of a population comes increasing 

densities of dwellings, and greater numbers of people 

influenced by the breach of structural integrity of buildings 

     

 
Figure 2. Left: Detection of event from cell tower data. Middle: Scatter plot with predicted epicenter, true epicenter, and tower 

activity. Right: Predicted regions where call traffic exceeds 1-σ from the baseline (warmer/darker shades) for the day of the event. 



and related infrastructure.  Also, the costs of diminishment 

of flows of food and water may rise rapidly in densely 

populated regions. Greater densities of population can also 

raise the risk of transmission of disease.    

 Given these features and the data collected from the 

towers, we can infer a linear classifier  𝑤 using algorithms 

such as Support-Vector Machines, logistic regression, and 

Gaussian Process classification (GPC) [Rasmussen and 

Williams 2006]. We shall review the construction of a 

classifier with GPC as it provides both predictions and 

estimates of uncertainties about those predictions. As we 

shall see, this classifier can be used to compute the value of 

information, which we employ later to compute the value 

of surveying regions. Formally, building the classifier 

results in a most-likely classifier, represented as 𝑤, and the 

variance around it Σw . For any test point, 𝑜𝑡𝑒𝑠𝑡 , the 

predictive probability of persistence can be written as: 

𝑝𝑡𝑒𝑠𝑡
𝑝𝑒𝑟𝑠𝑖 𝑠𝑡

= Φ(
𝑤𝑇𝑜𝑡𝑒𝑠𝑡

 1 + 𝑜𝑡𝑒𝑠𝑡
𝑇 Σ𝑤𝑜𝑡𝑒𝑠𝑡

) 

 

Here Φ(∙) denotes cumulative distribution function (cdf) of 

a normal distribution. This model thus can be used to 

persistence of a significant deviation at any hypothetical 

cell tower located at a coordinate (x,y). Specifically, given 

the parameters (𝑤, Σw )  and the test location (x,y), we can 

predict the persistence of deviation in the hypothetical cell 

tower at a particular location.  In use, we compute the 

distance from epicenter and obtain the population density 

𝜋(𝑥 ,𝑦). Then, we approximate 𝑎 (𝑥 ,𝑦)
𝑡 ′ , the deviation of 

activity of hypothetical towers on the day of the 

earthquake. We use a nearest-neighbor approximation, 

where we identify an existing cell tower 𝑗 that is nearest to 

the location (x,y) and assume that 𝑎 (𝑥 ,𝑦)
𝑡 ′ = 𝑎 𝑗

𝑡 ′ .  

  We compute an assistance-opportunity score for 

characterizing opportunities for assistance and identifying 

regions that might most benefit by relief efforts. Under the 

assumption that areas with high population density require 

more relief effort per unit of region we define the 

assistance score as the product of predicted relative 

increase in persistent call traffic multiplied by the 

population density: 

𝐴𝑠𝑠𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒(𝑥 ,𝑦) = 𝑝(𝑥 ,𝑦)
𝑝𝑒𝑟𝑠𝑖𝑠𝑡

∙ 𝜋(𝑥 ,𝑦) 

Determining Value of Survey.  Cell towers are most 

densely packed near big cities, capitals, and overall more 

developed parts of countries. Consequently, we can expect 

to have more confidence in predictions about opportunities 

for assistance around the areas with higher cell tower 

density, and have less confidence about inferences based 

on fewer cell towers.  Such uncertainty can be reduced 

with the pursuit of additional information following an 

earthquake. However, as surveillance resources are scarce 

and costly, we pursue a formal model for triaging scarce 

reconnaissance resources under a limited budget.  We take 

a decision-theoretic perspective to compute the expected 

value of surveying a region by considering expected benefit 

and costs of gathering information. In particular, we seek 

to select a set of locations 𝑆∗ from the set of non-

instrumented locations 𝑈 that provide maximum gain per 

unit cost
1
: 

 

𝑆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑆⊆𝑈
𝐺𝑎𝑖𝑛(𝑆)

𝐶𝑜𝑠𝑡(𝑆)
 

 

Given inferences that provide uncertainties in predictions, 

we can compute the expected value of information 

[Howard, 1967; Horvitz, Breese, and Henrion, 1989].  We 

shall define 𝐺𝑎𝑖𝑛(𝑆) as reduction in uncertainty at non-

instrumented locations. Formally, we use 𝐴 to denote the 

set of locations that we have information about and 𝑈 as 

the set we have not surveyed, respectively. We write the 

selection criterion as: 

 

                                                 
1 This criterion can also be represented as 𝐺𝑎𝑖𝑛 𝑆 −𝐶𝑜(𝑆); using gain per 
unit cost enables allows gain and the cost to be in different currencies. 

 
Figure 3. Inferences of opportunities for assistance. Maps display predictions about regions associated with increased opportunities 

for assistance, using as a proxy for disruption the extension of anomalous call activity to k days following the earthquake, weighted by 

population density. Warmer colors (darker shades) correspond to regions with increased opportunities for assistance.   



𝑆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑆⊆𝑈
𝐻 𝑈 − 𝑆|𝐴 − 𝐻(𝑈 − 𝑆|𝐴 ∪ 𝑆)

𝐶𝑜𝑠𝑡(𝑆)
 

 

where 𝐻(⋅) denotes entropy.  This formulation attempts to 

find the set 𝑆 that provides maximum information about 

the rest of the sites (denoted as: 𝑈 − 𝑆) under minimum 

costs. It is known that determining 𝑆∗ is computationally 

intractable for a large set 𝑈, however, a greedy solution to 

this problem results in a close approximation to the ideal 

solution in settings where a sub-modularity property holds 

[Krause et al. 2008]. We note that the above mentioned 

criteria attempts to optimize a gain in terms of reduction in 

uncertainty, without taking into account either the amount 

of disruption or the expected gain in terms of human lives 

that could be saved. Beyond optimizing the reduction in 

uncertainty, we can consider a gain, which we call 

expected value of survey, by multiplying the information 

theoretic savings (∆𝐻(⋅)) with the population density and 

the expected disruptions (𝑝𝑠
𝑝𝑒𝑟𝑠𝑖𝑠𝑡

). Formally, the greedy 

selection procedure selects the location s to survey that 

maximize the following: 

 

𝑉𝑎𝑙𝑢𝑒𝑂𝑓𝑆𝑢𝑟𝑣𝑒𝑦𝑠 = 𝑝𝑠
𝑝𝑒𝑟𝑠𝑖𝑠𝑡

∙ 𝜋𝑠 ⋅
∆𝐻(𝑠)

𝐶𝑜𝑠𝑡(𝑠)
 

 

 The other detail we need is an estimation of the 

uncertainty about inferences. For linear Gaussian Process 

models [Rasmussen and Williams 2006], we can show that 

the information theoretic gain can be written as [Krause et 

al. 2008]: 

 

△𝐻 𝑠 = log 
𝐾𝑠𝑠 − 𝐾𝑠𝐴𝐾𝐴𝐴

−1𝐾𝐴𝑠

𝐾𝑠𝑠 − 𝐾𝑠𝐴 𝐾𝐴 𝐴 
−1𝐾𝐴 𝑠

  

Here, 𝐾 = [𝑘𝑖𝑗 ], is a kernel matrix where  𝑘𝑖𝑗 =  𝑜𝑖
𝑇𝑜𝑗  are 

the linear projections. 

 Finally, we can approximate the cost of surveying a 

location as a function of the distance from a major city. 

However, we emphasize that cost can be modeled using 

various factors such as geography, financial considerations, 

time to respond, and other relevant variables. We can 

sequentially select sites to survey in a greedy manner until 

the budget is exhausted. Thus, given the location of cell 

towers and logged call activity, we can use the above 

methodology to determine the areas that should be probed 

under a budget in order to best triage relief efforts. 

Results 
We now test the proposed framework in the context of 

Rwandan CDR.  In particular, this data is aggregated to the 

tower-level, consisting of daily, directed communication 

volume for each cell tower in the country over a period of 

3 years.  These include data during the week including 

February 3, 2008, when a 5.9 magnitude earthquake was 

observed with an epicenter located by the USGS at 2.318 S 

and 28.945 E.  

 We first start by building baseline models from historic 

data recorded during a normal time-period. In particular we 

look at a continuous period of ten days and for each i
th

 cell 

tower record the mean 𝑚𝑖  and the variance 𝜎𝑖
2. This 

constitutes a baseline model and we use this model in 

performing the computations as described earlier. 

 

Detecting the Earthquake. We use the event detection 

score as described in Equation 1 to determine deviation  

from normal activity. Figure 2 (left) shows the scores for 

10 consecutive days around Feb 3, 2008.  We can see that 

the score spikes at the correct day when the earthquake 

occurred demonstrating that such a scoring scheme can be 

used to detect seismic events. 

 

Predicting Seismic Epicenter.  We next pursue the 

challenge of predicting the location of the epicenter from 

the cell tower activity. We use the model described in 

Equation 2, and use the communication data to infer the 

epicenter. In particular we maximize the likelihood of the 

model for this challenge. Figure 2 (middle) shows the 

result of this experiment. The cell towers are depicted as 

black circles with radii indicating call activity handled by 

cell towers.  We plot both the epicenter identified by 

USGS (magenta square) and the predicted epicenter. The 

predicted epicenter (-2.34, 28.71) is in close proximity to 

the USGS epicenter (-2.32, 28.94), highlighting the 

promise of using call activity and the existing 

communication infrastructure as a large-scale seismic 

sensing system. 

 

Inferring Opportunities for Assistance. We also seek to 

employ geospatial methods to model persistence of 

deviations in cell tower traffic. As described earlier, 

modeling this persistence may help to identify regions 

where relief efforts are most needed.  For experimental 

purposes, we learn the geospatial model parameters for k = 

1,..,5 days. More specifically, to explore capabilities of the 

model we use the tower data to build predictive models for 

each of five days following an earthquake.  

 We perform leave-one-out analysis in order to verify the 

performance of the model. In particular, for every cell 

tower in the training set we build a leave-one-out model 

using the rest of the training data and then use the model to 

predict the classification label the tower that has been left 

out (label = +1 means whether a significant effect persists 

or not). Table 1 shows recognition results using leave-one-

out and compares it with a baseline approach of using the 

observed activity on the day of the earthquake as 

predictions for persistence. We also mention the marginal 

rates (maximum recognition obtained when the classifier 

predicts same label for all the towers).  We can see that the 

predicted model is superior to the baseline and provides 

predictions that are significantly better for k =3, 4 and 5.  



. 
Table 1. Performance of geospatial-temporal model and 

baseline use of the previous day's observations. 

 

k 

Accuracy   

(Predictive Model)  

Accuracy 

(Baseline) 

Marginal 

1 0.63 0.54 0.57 

2 0.60 0.50 0.50 

3 0.78 062 0.71 

4 0.74 0.62 0.62 

5 0.65 0.45 0.57 

 

We apply the learned model to predict observations for any 

location (x, y), consequently recovering an estimate of 

disruption. Figure 2 (right) displays a map showing these 

predictions. Regions near the epicenter show higher 

disruption. However, disruptiveness is not smoothly 

distributed. As the model encapsulates the population 

density and call activity, we obtain a richer view of regions 

of disruption, per the definitions we have formulated.  

 We use these predictions about anomalous call volumes 

to compute the 𝐴𝑠𝑠𝑖𝑠𝑡𝑆𝑐𝑜𝑟𝑒 at all locations. Figure 3 

highlights the regions that we infer would most benefit 

from relief efforts, based a definition of disruption as call 

traffic anomalies at k days following the earthquake.  As 

we shift the definition of “disruption” as the extension of 

call traffic anomalies to increasingly longer durations, the 

inferred regions of increased opportunities for assistance 

shift away from epicenter, toward other regions of the 

country. 

 

Inferring Regions to Survey. Next, we explore the 

potential value of predictive modeling in computing the 

value of survey. We employ the greedy information-value 

procedure to select the top ten sites that should be surveyed 

in order to make the relief efforts effective. In this 

experiment, we assume that the cost of surveying a site is 

directly proportional to its distance from Kigali.  

 Figure 4 shows the map of the country with the top ten 

sites to survey. The figure also shows the existing cell 

towers. Further, the gray levels of different areas 

correspond to population density. Again, if we had used 

predictions to model call activity only on the day of the 

earthquake, the majority of the predicted regions to survey 

would be near the earthquake center. However, modeling 

the extension of disruptions to additional days, and 

considering anomalous call traffic at later days as proxies 

for disruption, leads to recommendations to survey much 

wider areas, especially for regions with high population 

density but fewer cell towers. 

Conclusion and Future Work 

We presented methods for using the cellular phone 

infrastructure to detect seismic events and their influences 

on a population. We applied the methods to tower-level 

CDR from Rwanda and demonstrated our ability to detect 

the 2008 Lac Kivu earthquake and estimate its epicenter. 

We reviewed approaches to inferring regions that require 

relief efforts and for guiding surveys. The results highlight 

the promise of performing predictive analyses with 

existing telecommunications infrastructure. Future research 

directions include running sensitivity analyses over ranges 

of parameters and assumptions to explore the robustness of 

the results, the use of richer models that consider such 

information as geographic terrain and more detailed 

measures of seismic activity, and methods for guiding 

proactive planning, aimed at mitigating such downstream 

phenomena as the cutting of food supply lines and the 

outbreak of disease. 
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Figure 4. Top ten sites to survey (green squares), with rank 

indicated by the size of square. Magenta dot is true epicenter. 


