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Abstract

The Causality Workbench project provides an environment to
test causal discovery algorithms. Via a web portal (http:
//clopinet.com/causality), we provide a number
of resources, including a repository of datasets, models, and
software packages, and a virtual laboratory allowing users to
benchmark causal discovery algorithms by performing virtual
experiments to study artificial causal systems. We regularly
organize competitions. In this paper, we explore the opportu-
nities offered by development applications.

Introduction
Uncovering cause-effect relationships is central in many as-
pects of everyday life in both highly industrialized and de-
velopment countries: what affects our health, the economy,
climate changes, world conflicts, and which actions have
beneficial effects? Establishing causality is critical to guid-
ing policy decisions in areas including medicine and phar-
macology, epidemiology, climatology, agriculture, econ-
omy, sociology, law enforcement, and manufacturing. Ur-
gent concerns include food supply/famine, and the spread of
crop diseases.

One important goal of causal modeling is to predict the
consequences of given actions, also called interventions,
manipulations or experiments. This is fundamentally dif-
ferent from the classical machine learning, statistics, or data
mining setting, which focuses on making predictions from
observations. Observations imply no manipulation on the
system under study whereas actions introduce a disruption
in the natural functioning of the system. In the medical do-
main, this is the distinction made between “diagnosis” (pre-
diction from observations) and “treatment” (intervention).
For instance, smoking and coughing might be both predic-
tive of respiratory disease and helpful for diagnosis purpose.
However, if smoking is a cause and coughing a consequence,
acting on the cause (smoking) can change your health status,
but not acting on the symptom or consequence (coughing).
Thus it is extremely important to distinguish between causes
and consequences to predict the result of actions like predict-
ing the effect of forbidding smoking in public places.
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The need for assisting policy making while reducing
the cost of experimentation and the availability of mas-
sive amounts of “observational” data prompted the prolifera-
tion of proposed causal discovery techniques (Glymour and
Cooper 1999; Pearl 2000; Spirtes, Glymour, and Scheines
2000; Neapolitan 2003; Koller and Friedman 2009), but it is
fair to say that to this day, they have not been widely adopted
by scientists and engineers. Part of the problem is the lack of
appropriate evaluation and the demonstration of the useful-
ness of the methods on a range of pilot applications. To fill
this need, we started a project called the ”Causality Work-
bench”, which offers the possibility of exposing the research
community to challenging causal problems and disseminat-
ing newly developed causal discovery technology. In this pa-
per, we outline our setup and methods and the possibilities
offered by the Causality Workbench to solve development
problems.

What are “causal problems”?
Causal discovery is a multi-faceted problem. The definition
of causality itself has eluded philosophers of science for cen-
turies, even though the notion of causality is at the core of
the scientific endeavor and also a universally accepted and
intuitive notion of everyday life. But, the lack of broadly
acceptable definitions of causality has not prevented the de-
velopment of successful and mature mathematical and algo-
rithmic frameworks for inducing causal relationships.

The type of causal relationships under consideration have
often been modeled as causal Bayesian networks or struc-
tural equation models (SEM) (Pearl 2000; Spirtes, Glymour,
and Scheines 2000; Neapolitan 2003). In the graphical rep-
resentation of such models, an arrow between two variables
A → B indicates the direction of a causal relationship: A
causes B. A node in of the graph, labeled with a particular
variable X , represents a mechanism to evaluate the value of
X given the parent node variable values. For Bayesian net-
works, such evaluation is carried out by a conditional prob-
ability distribution P (X|Parents(X)) while for structural
equation models it is carried out by a function of the parent
variables and a noise model. Learning a causal graph can be
thought of as a model selection problem: Alternative graph
architectures are considered and a selection is performed, ei-
ther by ranking the architectures with a global score (e.g., a
marginal likelihood, or a penalty-based cost function), or by



retaining only graphs, which fulfill a number of constraints
such as dependencies or independencies between subsets of
variables. Bayesian networks and SEMs provide a conve-
nient language to talk about the type of problem we are in-
terested in, but we made an effort to design tasks, which do
not preclude of any particular model. Our objective is not
to reduce causality to a simple or convenient definition or to
a family of models, which may induce simplifying assump-
tions that are either restrictive or unnecessary (e.g., discrete
variables, Gaussian distributions, linear effects, or no unob-
served common causes), but rather to define tasks with clear
objectives and give ourselves means of assessing how well
these objectives are reached.

In designing our first benchmark tasks we have focused
on some specific aspects of causal discovery:

Causality between random variables. We have so far
addressed mostly causal relationships between random vari-
ables, as opposed to causal relationships between events, or
objects.

Multivariate problems. Many early efforts in causal
studies have concentrated on the study of cause-effect rela-
tionships between a few variables. The availability of large
observational datasets with thousands of recorded variables
(in genomic studies with microarray data, in pharmacology
with high throughput screening, in marketing with logs of
internet customers, etc.) has drawn our attention to mul-
tivariate problems in which an array of eventually weak
causes might influence an outcome of interest, called “tar-
get”. Conversely, the study of causality between too few
variables (e.g., just two) is also a challenge since tests of
conditional independence using covariates are used by many
causal discovery algorithms.

Time dependency. Our everyday-life concept of causal-
ity is very much linked to time dependencies (causes precede
their effects). However, many machine learning problem are
concerned with stationary systems or “cross-sectional stud-
ies”, which are studies where many samples are drawn at a
given point in time. Thus, sometimes the reference to time
is replaced by the notion of “causal ordering”. Causal order-
ing can be understood as fixing a particular time scale and
considering only causes happening at time t and effects hap-
pening at time t + δt, where δt can be made as small as we
want. In practice, this means that the samples in our various
training and test sets are drawn independently, according to
a given distribution, which changes only between training
and test set versions.1 We are offering tasks with or without
time dependencies.

Learning from observational or experimental data.
We call observational data, data collected from a system let
to evolve according to its own dynamics. In contract, exper-
imental data is obtain as a result of interventions on the sys-
tem of interest by an external agent who disrupts the system
by imposing values to certain variables. Generally, exper-
imenting is the only way to ascertain causal relationships.

1When manipulations are performed, we must specify whether
we sample from the distribution before or after the effects of the
manipulation have propagated. Here we assume that we sample
after the effects have propagated.

However, in many domains, experimenting is difficult and
costly compared to collecting observational data. Hence, we
have investigated settings in which only observational data
are available for training. The tasks we collected also in-
clude settings in which both observational and experimental
data are available.

We have so far mostly addressed two tasks of interest:

1. Predicting the consequences of manipulations. In one
challenge we organized, our data included training sam-
ples drawn from a “natural” pre-manipulation distribution
and test data drawn from various post-manipulation distri-
butions (in which the values of a subset of variables has
been set to given values by an external agent, bypassing
the natural functioning of the system). The objective was
to predict withheld values of a target variable, given a the
values of a set of observed or manipulated variables.

2. Discovering causal structures. Causal graphs
(e.g., Bayesian networks or Structural Equation Models)
are powerful to represent mechanisms at a level sufficient
to reason and plan for future actions. A common exercise
is to investigate whether the structure of such models
can be reconstructed from artificial data generated by the
models, in an effort to reassure ourselves that structures
generated from real data may be meaningful.

The first task has a clear objective and it does not pre-
clude of any particular modeling technique. In particular, it
is not required to produce a causal graph. Operational defi-
nitions of causality (Glymour and Cooper 1999) use the no-
tion of manipulation to evidence cause-effect relationships.
Hence, predicting the consequences of manipulations is a
“causal question” that can serve to evaluate causal models
against non-causal models. The second task is more ex-
plicitly “causal”, but evaluating its solutions on real data re-
quires knowledge on the data generating systems, which we
usually do not have in practice. There are many other causal
questions, which we will progressively address (Guyon et al.
2010).

The Causality Workbench project
Our effort has been gaining momentum with the organi-
zation of two challenges, which each attracted over 50
participants. The first causality challenge we have orga-
nized (Causation and Prediction challenge, December 15
2007 - April 30 2008) allowed researchers both from the
causal discovery community and the machine learning com-
munity to try their algorithms on sizable tasks of real
practical interest in medicine, pharmacology, and sociol-
ogy (see http://www.causality.inf.ethz.ch/
challenge.php). The goal was to train models exclu-
sively on observational data, then make predictions of a
target variable on data collected after intervention on the
system under study were performed. This first challenge
reached a number of goals that we had set to ourselves:
familiarizing many new researchers and practitioners with
causal discovery problems and existing tools to address
them, pointing out the limitations of current methods on
some particular difficulties, and fostering the development



of new algorithms. The results indicated that causal discov-
ery from observational data is not an impossible task, but a
very hard one and pointed to the need for further research
and benchmarks (Guyon et al. 2008). The Causal Explorer
package (Aliferis et al. 2003), which we had made available
to the participants and is downloadable as freeware, proved
to be competitive and is a good starting point for researchers
new to the field. It is a Matlab (R) toolkit supporting “local”
causal discovery algorithms, efficient to discover the causal
structure around a target variable, even for a large number
of variables. The algorithms are based on structure learning
from tests of conditional independence, as all the top rank-
ing methods in this first challenge.

The first challenge explored an important problem in
causal modeling, but is only one of many possible prob-
lem statements. The second challenge called “competition
pot-luck” aimed at enlarging the scope of causal discovery
algorithm evaluation by inviting members of the commu-
nity to submit their own problems and/or solve problems
proposed by others. The challenge started September 15,
2008 and ended November 20, 2008, see http://www.
causality.inf.ethz.ch/pot-luck.php. One
task proposed by a participant drew a lot of attention: the
cause-effect pair task. The problem was to try to determine
in pairs of variables (of known causal relationships), which
one was the cause of the other. This problem is hard for a
lot of algorithms, which rely on the result of conditional in-
dependence tests of three or more variables. Yet the winners
of the challenge succeeded in unraveling 8/8 correct causal
directions (Zhang and Hyvärinen 2009).

A number of lessons were drawn from these first evalua-
tions:

• From an algorithmic perspective, we stubbled on the mul-
tivariate problem. Moving from a multivariate variable
selection task in an i.i.d. setting (Guyon et al. 2006) to
a similar task in a non i.i.d. setting (Guyon et al. 2008)
magnified the problem of “overfitting”. This problem is
familiar to machine learning scientists: in the i.i.d. set-
ting, multivariate algorithms struggle to outperform uni-
variate algorithms (selecting variables for their individual
predictive power). Additionally, in the causation and pre-
diction challenge, “causal” variable selection algorithms
struggled to outperform non-causal algorithms. Hence it
is important to match well tasks to methods: find causal
problems, which truly benefit from the causal discovery
arsenal and admit that some causal problems may as well
be solved by traditional statistical methods.

• From a methodology perspective, we realized that learn-
ing causal relationships reliably from observational data
only may not be realistic. Experiments are needed to
firm up hypotheses made by analyzing observational data.
This is particularly critical in a multivariate setting where
errors cumulate and propagate. Our Virtual Lab, briefly
described in the last section, lets researchers conduct vir-
tual experiments to benchmark hybrid techniques capi-
talizing both on observational data and designed experi-
ments.

• From a practical point of view, we learnt that for many

applications focusing on a particular target variable, it is
more important to rank candidate causes of the target in
order of potential impact on the target than to unravel the
overall causal structure of the covariates. This may re-
quire developing entirely new approaches.

• Finally, from a challenge design perspective, we dis-
covered that there is a lot of value in offering to
the participants the possibility of contributing problems,
which can evidence the power of causal discovery algo-
rithms (Guyon, Janzing, and Schölkopf 2009). We intend
to organize new “pot-luck challenges” in which the par-
ticipants can contribute problems. This type of challenge
may be a nice forum of development centric problems.
Part of our benchmarking effort is dedicated to collect-

ing problems from diverse application domains. Via the
organization of competitions, we have successfully chan-
neled the effort or dozens of researchers to solve new prob-
lems of scientific and practical interest and identified effec-
tive methods. However, competition without collaboration
is sterile. Recently, we have started introducing new di-
mensions to our effort of research coordination: stimulat-
ing creativity, collaborations, and data exchange. We are
organizing regular teleconference seminars. We have cre-
ated a data repository for the Causality Workbench already
populated by 15 datasets. All the resources, which are the
product of our effort, are freely available on the Internet at
http://clopinet.com/causality.

Causal problems in the development world
Causal structure learning is highly relevant in development
issues, as there are several domains where there is a lot of
data, a limited understanding of the causal relationships in-
volved, and a motivation to make predictions under interven-
tions on some of the variables. We have identified a number
of areas of interest:
• Epidemiology – Preventing new pandemics: The recent

Mexican pandemic flu has reminded us that we are still
vulnerable to the burst and spread of new diseases, which
are difficult to keep under control. Epidemiology has
long been one of the main areas of application of causal
modeling (Rubin 1974; Herskovits and Dagher 1997;
J.M. Robins 2000). Epidemiologists have also embraced
the new tools of genomics and proteomics to investigate
gene-environment interactions (Vinei and Kriebel 2006;
Jenab et al. 2009).

• Agriculture – Food supply and famine avoidance: The
World Health Organization estimates that one-third of the
world is well-fed, one-third is under-fed one-third is starv-
ing. Of the many factor potentially affecting the avail-
ability and the price of food (including climatic variation,
regional conflicts, reserves and supply from other parts
of the world), which ones should be the focus of atten-
tion and what policy should be put in place are impor-
tant causal questions? Crop yield optimization is one of
the oldest areas of causal studies, which gave birth to the
first formal mathematical methodology for designing ex-
periments by Fisher, in his book “The Design of Exper-
iments” (1935). The problem of supply an demand also



touches to econometrics, an active area of causal studies
(late Prof. Clive Granger received the 2003 Nobel prize
in economics for his causality-related work).

• Sociology – Violence, law enforcement, conflict man-
agement: Violence is an important obstacle to develop-
ment. Can we identify the causes of social conflicts and
crises and prevent them? There is also a long history of
use of causal models in social sciences, and particularly
structural equation models (SEM) (Haavelmo 1943)2.

• Ecology – Water supply and environment preserva-
tion, desertification, deforestation: According to (Geist
2005) desertification has three major types causes: me-
teorological (precipitation variations, atmospheric dust,
air temperature, elevated atmospheric CO2), ecologi-
cal (nutrient cycling, plan growth/regeneration/mortality,
microbial dynamics, plant cover, herbivory life cycles,
evapotranspiration), and human or socio-economic (loss
of habitat, overexploitation, spread of exotic pests and
weeds, pollution, climate changes). Can we contribute
to identifying causative mechanisms of desertification?

• Humanities – Education, culture and language preser-
vation: The future of development countries rests to a
large extent on education. Can we identify the educa-
tion deficiencies and their causes as well as the causes
of the disappearance of local know-how and cultural iden-
tity. For instance, according to UNESCO there are around
6000 languages spoken worldwide today, but half of the
world’s population communicates in only 8 languages and
more than 3000 languages are now spoken by fewer than
10000 people.
The key to involving the AAAI community in solving

these problems will be to identify useful databases and make
them available in a friendly format. We count on the collab-
oration of other interested researchers to make this happen
as there are many source of data publicly available, which
we could potentially use.

The World Health Organization (WHO)3, the United Na-
tions (UN)4 and many other institutions are making available
a wealth of statistics, which lend themselves to statistical
modeling. Our challenge will include integrating data from
various sources. For example, for the famine problem, one
may need to rely upon satellite data,5, geographical conflict
information,6, and general statistics from WHO, UN, etc.

Validating methodologies and findings is challenging, but
can be done both by studying retrospective data and compar-

2As an indication, the structural equation model journal was
ranked 1st in Social Sciences and Mathematical Methods in 2009
by Thomson Reuters Journal Citation (R).

3World Health Statistical Information System: http://www.
who.int/whosis/en/index.html.

4United Nations food and agriculture statistics: http://
www.fao.org/economic/ess/en/.

5NASA satellite data to predict famine: http:
//www.scientificblogging.com/news/using_
nasa_satellites_to_predict_famine.

6Nobel prize foundation conflict maps: http:
//nobelprize.org/educational_games/peace/
conflictmap/.

ing predictions against the results of simulations. Realistic
simulators, such as the epidemiology simulator STEM7 are
valuable resources.

Finally, we also have information available, which can be
used to identify the most effective actions8. These data can
be used for learning from experimental data.

On-going and planned activities
Our current challenge on “Active Learning” (http://
clopinet.com/al), incorporates several datasets on ap-
plications of interest to the development community, includ-
ing:

• Pharmacology: Discovery of molecules and mechanisms
of action against the HIV virus and tuberculosis.

• Ecology: Identification of vegetation cover from remote
sensing.

• Culture preservation: Electronic annotation of ancien
arabic manuscripts.

The website of the challenge will remain open after the com-
petition ends and we will encourage researchers from the
AAAI Spring Symposium on Artificial Intelligence for De-
velopment to use it to gain familiarity with causal tasks.

Methods for learning cause-effect relationships without
experimentation (learning from observational data) are at-
tractive because observational data is often available in
abundance and experimentation may be costly, unethical,
impractical, or even plain impossible. Still, many causal
relationships cannot be ascertained without the recourse to
experimentation and the use of a mix of observational and
experimental data might be more cost effective. We imple-
mented a Virtual Lab allowing researchers to perform ex-
periments on artificial systems to infer their causal structure.
The design of the platform is such that:

• Researchers can submit new artificial systems for others
to experiment.

• Experimenters can place queries and get answers.

• The activity is logged.

• Registered users have their own virtual lab space.

We have released a first version http://www.
causality.inf.ethz.ch/workbench.php.
We plan to attach to the virtual lab sizeable realis-
tic simulators such as the Spatiotemporal Epidemi-
ological Modeler (STEM), an epidemiology sim-
ulator developed at IBM, now publicly available:
http://www.eclipse.org/stem/.

Our planned challenge ExpDeCo (Experimental Design
in Causal Discovery) will benchmark methods of experi-
mental design in application to causal modeling. The goal

7Model of the Mexican Pandemic publicly available for
the STEM simulator: http://www.eclipse.org/stem/
download_sample.php?file=UsaMexicoDemo.zip.

8For instance the web sites rating charities like http://www.
charitynavigator.org/.



will be to identify effective methods to unravel causal mod-
els, requiring a minimum of experimentation, using the Vir-
tual Lab. A budget of virtual cash will be allocated to par-
ticipants to “buy” the right to observe or manipulate certain
variables, manipulations being more expensive that observa-
tions. The participants will have to spend their budget opti-
mally to make the best possible predictions on test data. This
setup lends itself to incorporating problems of relevance to
development projects, in particular in medicine and epidemi-
ology where experimentation is difficult while developing
new methodology.

We are planning another challenge called CoMSICo for
“Causal Models for System Identification and Control”,
which is more ambitious in nature because it will perform
a continuous evaluation of causal models rather than sepa-
rating training and test phase. In contrast with ExpDeCo in
which the organizers will provide test data with prescribed
manipulations to test the ability of the participants to make
predictions of the consequences of actions, in CoMSICo, the
participants will be in charge of making their own plan of ac-
tion (policy) to optimize an overall objective (e.g., improve
the life expectancy of a population, improve the GNP, etc.)
and they will be judged directly with this objective, on an
on-going basis, with no distinction between “training” and
“test” data. This challenge will also be via the Virtual Lab.
The participants will be given an initial amount of virtual
cash, and, as previously, both actions and observations will
have a price. New in CoMSICo, virtual cash rewards will be
given for achieving good intermediate performance, which
the participants will be allowed to re-invest to conduct addi-
tional experiments and improve their plan of action (policy).
The winner will be the participant ending up with the largest
amount of virtual cash.

While some of our core activities focus on benchmarking
algorithms, we realize that discovery and problem-solving
are critical aspects, which cannot always be quantitatively
evaluated on the short run, yet need immediate attention
from the research community. With the collaboration of
other researchers we will enroll at the AAAI Spring Sympo-
sium on Artificial Intelligence for Development, we intend
to populate our repository with development-related prob-
lems. We intend to involve interested participants in the or-
ganization of a new “pot-luck challenges”, specifically on
development problems.

Conclusion
Our program of data exchange and benchmark will make
available to the research community problems that tie
into development projects in various application domains.
Causal discovery is a problem of fundamental and practi-
cal interest in many areas of science and technology and
there is a need for assisting policy making in all these areas
while reducing the costs of data collection and experimen-
tation. Hence, the identification of efficient techniques to
solve causal problems will have a widespread impact. Our
activities, such as teleconference seminars, data and tool ex-
change, competitions and post-competition collaborative ex-
periments, will cement collaborations between researchers

and ensure a rapid and broad dissemination of the methods
and results.
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